MMACE Paper: Random Forest for Blood-Brain Barrier
Show code cell source
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib as mpl
import rdkit, rdkit.Chem, rdkit.Chem.Draw
from rdkit.Chem.Draw import IPythonConsole
import numpy as np
import skunk
import mordred, mordred.descriptors
import exmol as exmol
from rdkit.Chem.Draw import rdDepictor
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, plot_roc_curve
rdDepictor.SetPreferCoordGen(True)
IPythonConsole.ipython_useSVG = True
sns.set_context("notebook")
sns.set_style(
"dark",
{
"xtick.bottom": True,
"ytick.left": True,
"xtick.color": "#666666",
"ytick.color": "#666666",
"axes.edgecolor": "#666666",
"axes.linewidth": 0.8,
"figure.dpi": 300,
},
)
color_cycle = ["#1BBC9B", "#F06060", "#F3B562", "#6e5687", "#5C4B51"]
mpl.rcParams["axes.prop_cycle"] = mpl.cycler(color=color_cycle)
np.random.seed(0)
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 10
8 import skunk
9 import mordred, mordred.descriptors
---> 10 import exmol as exmol
11 from rdkit.Chem.Draw import rdDepictor
12 from sklearn.ensemble import RandomForestClassifier
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/exmol/__init__.py:3
1 from .version import __version__
2 from . import stoned
----> 3 from .exmol import *
4 from .data import *
5 from .stoned import sanitize_smiles
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/exmol/exmol.py:30
28 from rdkit.Chem import rdchem # type: ignore
29 from rdkit.DataStructs.cDataStructs import BulkTanimotoSimilarity, TanimotoSimilarity # type: ignore
---> 30 import langchain.llms as llms
31 import langchain.prompts as prompts
33 from . import stoned
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langchain/llms/__init__.py:22
1 """
2 **LLM** classes provide
3 access to the large language model (**LLM**) APIs and services.
(...)
18 AIMessage, BaseMessage
19 """ # noqa: E501
20 from typing import Any, Callable, Dict, Type
---> 22 from langchain.llms.base import BaseLLM
25 def _import_ai21() -> Any:
26 from langchain.llms.ai21 import AI21
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langchain/llms/base.py:2
1 # Backwards compatibility.
----> 2 from langchain_core.language_models import BaseLanguageModel
3 from langchain_core.language_models.llms import (
4 LLM,
5 BaseLLM,
(...)
9 update_cache,
10 )
12 __all__ = [
13 "create_base_retry_decorator",
14 "get_prompts",
(...)
19 "LLM",
20 ]
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langchain_core/language_models/__init__.py:7
1 from langchain_core.language_models.base import (
2 BaseLanguageModel,
3 LanguageModelInput,
4 LanguageModelOutput,
5 get_tokenizer,
6 )
----> 7 from langchain_core.language_models.chat_models import BaseChatModel, SimpleChatModel
8 from langchain_core.language_models.llms import LLM, BaseLLM
10 __all__ = [
11 "BaseLanguageModel",
12 "BaseChatModel",
(...)
18 "LanguageModelOutput",
19 ]
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langchain_core/language_models/chat_models.py:20
7 from functools import partial
8 from typing import (
9 TYPE_CHECKING,
10 Any,
(...)
17 cast,
18 )
---> 20 from langchain_core.callbacks import (
21 AsyncCallbackManager,
22 AsyncCallbackManagerForLLMRun,
23 BaseCallbackManager,
24 CallbackManager,
25 CallbackManagerForLLMRun,
26 Callbacks,
27 )
28 from langchain_core.globals import get_llm_cache
29 from langchain_core.language_models.base import BaseLanguageModel, LanguageModelInput
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langchain_core/callbacks/__init__.py:13
1 from langchain_core.callbacks.base import (
2 AsyncCallbackHandler,
3 BaseCallbackHandler,
(...)
11 ToolManagerMixin,
12 )
---> 13 from langchain_core.callbacks.manager import (
14 AsyncCallbackManager,
15 AsyncCallbackManagerForChainGroup,
16 AsyncCallbackManagerForChainRun,
17 AsyncCallbackManagerForLLMRun,
18 AsyncCallbackManagerForRetrieverRun,
19 AsyncCallbackManagerForToolRun,
20 AsyncParentRunManager,
21 AsyncRunManager,
22 BaseRunManager,
23 CallbackManager,
24 CallbackManagerForChainGroup,
25 CallbackManagerForChainRun,
26 CallbackManagerForLLMRun,
27 CallbackManagerForRetrieverRun,
28 CallbackManagerForToolRun,
29 ParentRunManager,
30 RunManager,
31 )
32 from langchain_core.callbacks.stdout import StdOutCallbackHandler
33 from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langchain_core/callbacks/manager.py:26
9 from typing import (
10 TYPE_CHECKING,
11 Any,
(...)
22 cast,
23 )
24 from uuid import UUID
---> 26 from langsmith.run_helpers import get_run_tree_context
27 from tenacity import RetryCallState
29 from langchain_core.callbacks.base import (
30 BaseCallbackHandler,
31 BaseCallbackManager,
(...)
37 ToolManagerMixin,
38 )
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langsmith/__init__.py:10
6 except metadata.PackageNotFoundError:
7 # Case where package metadata is not available.
8 __version__ = ""
---> 10 from langsmith.client import Client
11 from langsmith.evaluation.evaluator import EvaluationResult, RunEvaluator
12 from langsmith.run_helpers import trace, traceable
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langsmith/client.py:43
41 from langsmith import schemas as ls_schemas
42 from langsmith import utils as ls_utils
---> 43 from langsmith.evaluation import evaluator as ls_evaluator
45 if TYPE_CHECKING:
46 import pandas as pd
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langsmith/evaluation/__init__.py:4
1 """Evaluation Helpers."""
3 from langsmith.evaluation.evaluator import EvaluationResult, RunEvaluator
----> 4 from langsmith.evaluation.string_evaluator import StringEvaluator
6 __all__ = ["EvaluationResult", "RunEvaluator", "StringEvaluator"]
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/langsmith/evaluation/string_evaluator.py:3
1 from typing import Callable, Dict, Optional
----> 3 from pydantic import BaseModel
5 from langsmith.evaluation.evaluator import EvaluationResult, RunEvaluator
6 from langsmith.schemas import Example, Run
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/pydantic/__init__.py:372, in __getattr__(attr_name)
370 return import_module(f'.{attr_name}', package=package)
371 else:
--> 372 module = import_module(module_name, package=package)
373 return getattr(module, attr_name)
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/importlib/__init__.py:127, in import_module(name, package)
125 break
126 level += 1
--> 127 return _bootstrap._gcd_import(name[level:], package, level)
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/pydantic/main.py:15
12 import typing_extensions
13 from pydantic_core import PydanticUndefined
---> 15 from ._internal import (
16 _config,
17 _decorators,
18 _fields,
19 _forward_ref,
20 _generics,
21 _mock_val_ser,
22 _model_construction,
23 _repr,
24 _typing_extra,
25 _utils,
26 )
27 from ._migration import getattr_migration
28 from .annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/pydantic/_internal/_decorators.py:15
12 from typing_extensions import Literal, TypeAlias, is_typeddict
14 from ..errors import PydanticUserError
---> 15 from ._core_utils import get_type_ref
16 from ._internal_dataclass import slots_true
17 from ._typing_extra import get_function_type_hints
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/pydantic/_internal/_core_utils.py:16
14 from pydantic_core import CoreSchema, core_schema
15 from pydantic_core import validate_core_schema as _validate_core_schema
---> 16 from typing_extensions import TypeAliasType, TypeGuard, get_args, get_origin
18 from . import _repr
19 from ._typing_extra import is_generic_alias
ImportError: cannot import name 'TypeAliasType' from 'typing_extensions' (/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/typing_extensions.py)
data = pd.read_csv("BBBP.csv")
data.head()
# make object that can compute descriptors
calc = mordred.Calculator(mordred.descriptors, ignore_3D=True)
# make subsample from pandas df
molecules = [rdkit.Chem.MolFromSmiles(smi) for smi in data.smiles]
# the invalid molecules were None, so we'll just
# use the fact the None is False in Python
valid_mol_idx = [bool(m) for m in molecules]
valid_mols = [m for m in molecules if m]
try:
raw_features = pd.read_pickle("raw_features.pb")
except FileNotFoundError as e:
raw_features = calc.pandas(valid_mols, nproc=8, quiet=True)
raw_features.to_pickle("raw_features.pb")
labels = data[valid_mol_idx].p_np
fm = raw_features.mean()
fs = raw_features.std()
def feature_convert(f):
f -= fm
f /= fs
return f
features = feature_convert(raw_features)
# we have some nans in features, likely because std was 0
features = features.values.astype(float)
features_select = np.all(np.isfinite(features), axis=0)
features = features[:, features_select]
X_train, X_test, y_train, y_test = train_test_split(
features, labels, test_size=0.2, shuffle=True
)
clf = RandomForestClassifier(max_depth=8, random_state=0)
clf.fit(X_train, y_train)
predicted = clf.predict(X_test)
print("AUC", roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]))
plt.figure(figsize=(4, 3), dpi=300)
plot_roc_curve(clf, X_test, y_test)
plt.plot([0, 1], [0, 1], linestyle="--")
plt.savefig("RF-ROC.png")
def model_eval(smiles, _=None):
molecules = [rdkit.Chem.MolFromSmiles(smi) for smi in smiles]
# input wrangling. Get some weird values from weird smiles
raw_features = calc.pandas(molecules, nproc=8, quiet=True)
features = feature_convert(raw_features)
features = features.values.astype(float)
features = features[:, features_select]
labels = clf.predict(np.nan_to_num(features))
return labels
# return np.random.choice([True, False], size=labels.shape)
labels = model_eval(data.iloc[valid_mol_idx].smiles.values[:100])
example_neg = data.iloc[valid_mol_idx].smiles.values[np.argmin(labels)]
example_pos = data.iloc[valid_mol_idx].smiles.values[np.argmax(labels)]
example_neg_y, example_pos_y = model_eval([example_neg, example_pos])
print("neg:", example_neg, "\npos:", example_pos)
print(example_neg_y, example_pos_y)
space = exmol.sample_space(example_neg, model_eval, quiet=True)
exps = exmol.cf_explain(space)
print(exps)
fkw = {"figsize": (8, 6)}
mpl.rc("axes", titlesize=12)
exmol.plot_cf(exps, figure_kwargs=fkw, mol_size=(450, 400), nrows=1)
plt.savefig("rf-simple.png", dpi=180)
svg = exmol.insert_svg(exps, mol_fontsize=14)
with open("svg_figs/rf-simple.svg", "w") as f:
f.write(svg)
font = {"family": "normal", "weight": "normal", "size": 22}
exmol.plot_space(
space,
exps,
figure_kwargs=fkw,
mol_size=(300, 200),
offset=0,
cartoon=True,
rasterized=True,
)
plt.scatter([], [], label="Counterfactual", s=150, color=plt.get_cmap("viridis")(1.0))
plt.scatter([], [], label="Same Class", s=150, color=plt.get_cmap("viridis")(0.0))
plt.legend(fontsize=22)
plt.tight_layout()
plt.savefig("rf-space.png", dpi=180)
svg = exmol.insert_svg(exps, mol_fontsize=14)
with open("svg_figs/rf-space.svg", "w") as f:
f.write(svg)
skunk.display(svg)
Schematic Plots
from rdkit.Chem import MolFromSmiles as smi2mol
from rdkit.Chem import MolToSmiles as mol2smi
from rdkit.Chem.Draw import MolToImage as mol2img
dos = rdkit.Chem.Draw.MolDrawOptions()
dos.useBWAtomPalette()
# dos.minFontSize = fontsize
img = mol2img(smi2mol(exps[0].smiles), options=dos)
# img.save("rf-schem-1.png")
fkw = {"figsize": (8, 4)}
font = {"family": "normal", "weight": "normal", "size": 22, "dpi": 300}
exmol.plot_space(
space, exps[:2], figure_kwargs=fkw, mol_size=(300, 200), offset=0, cartoon=True
)
plt.scatter([], [], label="Counterfactual", s=150, color=plt.get_cmap("viridis")(1.0))
plt.scatter([], [], label="Same Class", s=150, color=plt.get_cmap("viridis")(0.0))
plt.legend(fontsize=22)
plt.tight_layout()
plt.savefig("rf-schem-3.png", bbox_inches="tight", dpi=180)
svg = exmol.insert_svg(exps[:2], mol_fontsize=10)
with open("rf-scheme.svg", "w") as f:
f.write(svg)
skunk.display(svg)
Chemed
cspace = exmol.sample_space(
"Cc1ccc(cc1Nc2nccc(n2)c3cccnc3)NC(=O)c4ccc(cc4)CN5CCN(CC5)C",
model_eval,
preset="medium",
quiet=True,
)
kws = {"num_samples": 1500}
zspace = exmol.sample_space(
"Cc1ccc(cc1Nc2nccc(n2)c3cccnc3)NC(=O)c4ccc(cc4)CN5CCN(CC5)C",
model_eval,
preset="chemed",
method_kwargs=kws,
quiet=True,
)
### Gleevec molecule
exps = exmol.cf_explain(zspace)
fkw = {"figsize": (8, 6)}
mpl.rc("axes", titlesize=12)
exmol.plot_cf(exps, figure_kwargs=fkw, mol_size=(450, 400), nrows=1)
fkw = {"figsize": (8, 6)}
mpl.rc("axes", titlesize=12)
cfs = exmol.cf_explain(cspace, nmols=4)
exmol.plot_cf(cfs, figure_kwargs=fkw, mol_fontsize=26, mol_size=(400, 400), nrows=1)
plt.savefig("gleevec-cs.png", bbox_inches="tight", dpi=180)
svg = exmol.insert_svg(cfs)
with open("svg_figs/gleevec-cs.svg", "w") as f:
f.write(svg)
fkw = {"figsize": (8, 6)}
mpl.rc("axes", titlesize=12)
exmol.plot_cf(exps, figure_kwargs=fkw, mol_size=(450, 400), nrows=1)
plt.savefig("rf-simple.png", dpi=180)
svg = exmol.insert_svg(exps, mol_fontsize=14)
with open("svg_figs/gleevec-simple.svg", "w") as f:
f.write(svg)
fkw = {"figsize": (10, 6)}
mpl.rc("axes", titlesize=12)
exmol.plot_cf(exps, figure_kwargs=fkw, mol_size=(450, 400), nrows=1)
zexps = exmol.cf_explain(zspace, nmols=5)